Hankel operators and invariant subspaces of the Dirichlet space
نویسندگان
چکیده
The Dirichlet space D is the space of all analytic functions f on the open unit disc D such that f ′ is square integrable with respect to two-dimensional Lebesgue measure. In this paper we prove that the invariant subspaces of the Dirichlet shift are in 1-1 correspondence with the kernels of the Dirichlet-Hankel operators. We then apply this result to obtain information about the invariant subspace lattice of the weak product D D and to some questions about approximation of invariant subspaces of D. Our main results hold in the context of superharmonically weighted Dirichlet spaces.
منابع مشابه
Invariant Subspaces, Quasi-invariant Subspaces, and Hankel Operators
In this paper, using the theory of Hilbert modules we study invariant subspaces of the Bergman spaces on bounded symmetric domains and quasi-invariant sub-spaces of the Segal–Bargmann spaces. We completely characterize small Hankel operators with finite rank on these spaces.
متن کاملShift Invariant Spaces and Shift Preserving Operators on Locally Compact Abelian Groups
We investigate shift invariant subspaces of $L^2(G)$, where $G$ is a locally compact abelian group. We show that every shift invariant space can be decomposed as an orthogonal sum of spaces each of which is generated by a single function whose shifts form a Parseval frame. For a second countable locally compact abelian group $G$ we prove a useful Hilbert space isomorphism, introduce range funct...
متن کاملBounded Analytic Functions in the Dirichlet Space
In this paper we study the Hilbert space of analytic functions with finite Dirichlet integral in a connected open set C2 in the complex plane. We show that every such function can be represented as a quotient of two bounded analytic functions, each of which has a finite Dirichlet integral. This has several consequences for the structure of invariant subspaces of the algebra of multiplication op...
متن کاملEssential norm of generalized composition operators from weighted Dirichlet or Bloch type spaces to Q_K type spaces
In this paper we obtain lower and upper estimates for the essential norms of generalized composition operators from weighted Dirichlet spaces or Bloch type spaces to $Q_K$ type spaces.
متن کاملOperators Associated with Soft and Hard Spectral Edges from Unitary Ensembles
Abstract. Using Hankel operators and shift-invariant subspaces on Hilbert space, this paper develops the theory of the operators associated with soft and hard edges of eigenvalue distributions of random matrices. Tracy and Widom introduced a projection operator W to describe the soft edge of the spectrum of the Gaussian unitary ensemble. The subspace WL is simply invariant under the translation...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. London Math. Society
دوره 91 شماره
صفحات -
تاریخ انتشار 2015